Package: erratum (via r-universe)

September 1, 2024

Title Handle Error and Warning Messages
Version 2.2.0.9000

Description Elegantly handle error and warning messages.
License AGPL-3

Encoding UTF-8

LazyData true

Roxygen list(markdown = TRUE)
RoxygenNote 7.3.0

Imports R6, rlang

Suggests testthat, covr, shiny
Config/testthat/edition 3

BugReports https://github.com/devOpifex/erratum/issues/
Repository https://devopifex.r-universe.dev

RemoteUrl https://github.com/devOpifex/erratum

RemoteRef HEAD

RemoteSha b7648{8a59deb7002f9f9d61920a9aefe2e00b40

Contents

bash e
checks L e e

EW o o e e e e
get_call e e
GELLMSE .« o vt ot e e e e e e e e e e e e e e e e
Issue e e e e e

https://github.com/devOpifex/erratum/issues/

TAISE . v v vt e 12
TeSOIVES e e e 12
SKIDp . o 13
template e e e e e 14
Warning e e e 14
Index 16
bash Take a Bash
Description

Equivalent to tryCatch().

Usage

bash(expr, e = NULL, w = NULL)

Arguments

expr Expression to run, passed to tryCatch().

e,w An object of class Error or Warning as returned by e () or w().
Examples

safe_log <- function(x){
result <- bash(log(x))

if(is.e(result))
stop(result$stop())

return(result)

}

if(interactive())

nan

safe_log("a")

checks

checks Check

Description

Check whether an object is an error or a warning.
Usage
is.e(obj)

Default S3 method:
is.e(obj)

S3 method for class 'err'
is.e(obj)

is.w(obj)

Default S3 method:
is.w(obj)

S3 method for class 'err'
is.w(obj)

is.problem(obj)

Arguments

obj Object to check.

Value

A boolean value.

Functions

* is.e: Whether the object is an error.
* is.w: Whether the object is a warning.

* is.problem: Whether the object is an error or a warning.
Examples
err <- e("Whoops!")

is.e(err)
is.w(err)

e.observe

chk Check

Description

Checks individual objects.

Usage
chk(obj)

Default S3 method:
chk(obj)

S3 method for class 'err'
chk(obj)

Arguments

obj Object to check.

Details

Runs warning() or stop() where necessary.

e.observe Observe with Error Handling

Description

Observe with erratum error handling.

Usage

e.observe(
X,
e = NULL,
w = NULL,
env = parent.frame(),

label = NULL,

suspended = FALSE,
priority = 0,

domain = shiny::getDefaultReactiveDomain(),
autoDestroy = TRUE,
..stacktraceon = TRUE

e.observe.event

Arguments

X
e
W

env

label
suspended

priority

domain

autoDestroy

An expression (quoted or unquoted). Any return value will be ignored.
Error handler.
Warning handler.

The parent environment for the reactive expression. By default, this is the calling
environment, the same as when defining an ordinary non-reactive expression. If
x is a quosure and quoted is TRUE, then env is ignored.

Not used.
A label for the observer, useful for debugging.

If TRUE, start the observer in a suspended state. If FALSE (the default), start in a
non-suspended state.

An integer or numeric that controls the priority with which this observer should
be executed. A higher value means higher priority: an observer with a higher
priority value will execute before all observers with lower priority values. Posi-
tive, negative, and zero values are allowed.

See domains.

If TRUE (the default), the observer will be automatically destroyed when its do-
main (if any) ends.

..stacktraceon Advanced use only. For stack manipulation purposes; see stacktrace().

e.observe.event

Observe Event with Error Handling

Description

Observe event with erratum error handling.

Usage

e.observe.event(

eventExpr,

handlerExpr,

e = NULL,
w = NULL,
event.env =

parent.frame(),

event.quoted = FALSE,

handler.env

parent.frame(),

handler.quoted = FALSE,

label = NULL,

suspended = FALSE,

priority = 0,

domain = shiny::getDefaultReactiveDomain(),

6 e.observe.event

autoDestroy = TRUE,
ignoreNULL = TRUE,
ignorelnit = FALSE,

once = FALSE
)
Arguments

eventExpr A (quoted or unquoted) expression that represents the event; this can be a simple
reactive value like input$click, a call to a reactive expression like dataset (),
or even a complex expression inside curly braces

handlerExpr The expression to call whenever eventExpr is invalidated. This should be a
side-effect-producing action (the return value will be ignored). It will be exe-
cuted within an isolate() scope.

e Error handler.

w Warning handler.

event.env The parent environment for the reactive expression. By default, this is the calling

environment, the same as when defining an ordinary non-reactive expression. If
eventExpr is a quosure and event.quoted is TRUE, then event.env is ignored.

event.quoted If it is TRUE, then the quote ()ed value of eventExpr will be used when eventExpr
is evaluated. If eventExpr is a quosure and you would like to use its expression
as a value for eventExpr, then you must set event.quoted to TRUE.

handler.env The parent environment for the reactive expression. By default, this is the calling
environment, the same as when defining an ordinary non-reactive expression. If
handlerExpr is a quosure and handler.quoted is TRUE, then handler.env is
ignored.

handler.quoted If it is TRUE, then the quote()ed value of handlerExpr will be used when
handlerExpr is evaluated. If handlerExpr is a quosure and you would like to
use its expression as a value for handlerExpr, then you must set handler.quoted
to TRUE.

Currently not used.
label A label for the observer or reactive, useful for debugging.

suspended If TRUE, start the observer in a suspended state. If FALSE (the default), start in a
non-suspended state.

priority An integer or numeric that controls the priority with which this observer should
be executed. An observer with a given priority level will always execute sooner
than all observers with a lower priority level. Positive, negative, and zero values
are allowed.

domain See domains.

autoDestroy If TRUE (the default), the observer will be automatically destroyed when its do-
main (if any) ends.

ignoreNULL Whether the action should be triggered (or value calculated, in the case of
eventReactive) when the input event expression is NULL. See Details.

Error 7
ignorelnit If TRUE, then, when this observeEvent is first created/initialized, ignore the
handlerExpr (the second argument), whether it is otherwise supposed to run or
not. The default is FALSE. See Details.
once Whether this observeEvent should be immediately destroyed after the first time
that the code in handlerExpr is run. This pattern is useful when you want to
subscribe to a event that should only happen once.
Error Error
Description
Error
Error

Super class

erratum: :Issue ->Error

Methods
Public methods:

* Error$new()

* Error$stop()
e Error$fatal()
* Error$clone()

Method new():
Usage:

Error$new(obj, raiser = getOption("ERR_RAISER_ERROR", stopper))

Arguments:
obj A character string or an object of class error, or warning.
raiser Template to raise the issue.

Details: Initialise

Method stop():
Usage:
Error$stop()
Details: Stop
Analogous to stop()

Method fatal():

Usage:
Error$fatal()

Details: Fatal
Analogous to stop()

Method clone(): The objects of this class are cloneable with this method.

Usage:
Error$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

cew

ew Handlers

Description

Handle errors and warnings.

Usage

e(obj)

w(obj)

Arguments

obj A character string or an object of class error, or warning.

Examples

err <- e("Something went wrong")
foo <- function(x){

if(is.character(x))
return(err)

log(x)
)

foo("a")

get_call 9

get_call Extract Call

Description

Extract call from error and warnings.

Usage
get_call(obj)

Arguments
obj Message string, object of class error, or warning.
get_msg Extract Message
Description

Extract message from error and warnings.

Usage
get_msg(obj)

Arguments
obj Message string, object of class error, or warning.
Issue Core Class
Description

Core class to create and handle issues.

Active bindings

rule Rules to perform checks, must be functions that accept a single argument and return a boolean.
message The message (warning or error).
call Expression or function (as string) that led to the issue.

raiser Function to run when the raise method is called. By default the error uses stop() and
warning uses warning(). The function must accept a single argument: the error message
(character vector).

10 Issue

Methods
Public methods:

e Issue$new()

e Issue$print()

e Issue$return()
e Issue$addRule()
* Issue$check()

e Issue$raise()

e Issue$clone()

Method new():
Usage:
Issue$new(obj, type = c("error”, "warning"))

Arguments:
obj A character string or an object of class error, or warning.
type Type of message.

Details: Initialise

Method print():
Usage:
Issue$print()

Details: Print
Print message of error or warning.
Method return():

Usage:
Issue$return(n = 1)

Arguments:
n the number of generations to go back, passed to parent. frame().

Details: Return Returns self from parent function.

Method addRule():

Usage:
Issue$addRule(fn)

Arguments:
fn Function defining rule, must accept a single argument and return a boolean.

Details: Add arule

Method check():
Usage:
Issue$check(obj)

Arguments:

latch 11

obj Object to check by rules
Details: Add a predicate

Method raise():

Usage:
Issue$raise(fn = NULL)

Arguments:

fn A function to use to raise the issue.

Details: Raise error or warning

Method clone(): The objects of this class are cloneable with this method.

Usage:
Issue$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

latch Latch an Error or a Warning

Description

Latch an error or a warning to an object to indicate an issue associated with it. These can later be
checked with is.e() and is.w(), and can also be resolve().

Usage
latch.e(obj, error)
latch.w(obj, warning)
unlatch(obj)

Arguments

obj Object to latch the error or warning onto.

error,warning Error or warning, the output of e () or w().

Functions

* latche and latchw: latch an error or a warning.

* unlatch: unlatch any error or warning.

12 resolves

Examples

x <-1
problematic <- latch.e(x, e("Not right"))

is.e(problematic)

do_sth_with_x <- function(x){
resolve(x)
X + 1

3

if(interactive()){
do_sth_with_x(x)
do_sth_with_x(problematic)
3

unlatch(problematic)

raise Raisers

Description

Set raise method globally, every subsequent raise method will make use of this function.

Usage

raise.e(fn = NULL)

raise.w(fn = NULL)

Arguments
fn Function to run when the raise method is called. By default the error uses
stop() and warning uses warning(). The function must accept a single argu-
ment: the error message (character vector).
resolves Resolve Errors and Warnings
Description

Resolve Errors and Warnings

skip 13
Usage
resolve(...)

defer_resolve(...)

Arguments

Objects to check, if any of them is an Error then stop() is called, if any are
Warnings then warning() is called.

Details

Objects passed are evalutated in order.

Value

Invisiby returns NULL

skip Skip

Description

Skip the rest of the function; calls return() in the parent function if any object is an error or
(optionally) a warning.

Usage

skip(..., w = FALSE)

Arguments

Objects to check, if any of them is an Error then it calls return() in the parent
function, this can optionally be applied if any object is a Warning with the w
argument.

w Whether to also skip is there are Warning.

14

Warning

template Templates

Description

Define error and warning templates.

Usage

template.e(pat = "%s")

template.w(pat = "%s")

Arguments

pat Pattern to use, must include %s, forwarded to sprintf ().

Examples

msg <- "Something's wrong"

default
e(msg)

template
template.e("Whoops: %s - sorry!")
e(msg)

reset
template.e()

Warning Error

Description

Error

Error

Super class

erratum: :Issue ->Warning

Warning 15

Methods
Public methods:

e Warning$new()
* Warning$warn()
* Warning$clone()

Method new():

Usage:
Warning$new(obj, raiser = getOption("ERR_RAISER_WARNING", warner))

Arguments:
obj A character string or an object of class error, or warning.

raiser Template to raise the issue.

Details: Initialise

Method warn():
Usage:
Warning$warn()

Details: Warn
Analogous to warning()
Method clone(): The objects of this class are cloneable with this method.
Usage:
Warning$clone(deep = FALSE)
Arguments:

deep Whether to make a deep clone.

Index

bash, 2

checks, 3
chk, 4

defer_resolve (resolves), 12
domains, 5, 6

e(ew), 8

e(),2,11
e.observe, 4
e.observe.event, 5
erratum: :Issue, 7, 14
Error,7

ew, 8

get_call, 9
get_msg, 9

is.e (checks), 3
is.e(), 11

is.problem (checks), 3
is.w(checks), 3
is.w(), 11
isolate(), 6

Issue, 9

latch, 11
parent.frame(), 10
quote(), 6

raise, 12

resolve (resolves), 12
resolve(), 11
resolves, 12
return(), 13

skip, 13
sprintf(), 14

16

stacktrace(), 5
stop(),4,7,8,13

template, 14
tryCatch(), 2

unlatch (latch), 11

w(ew), 8

w(), 2,11
Warning, 14
warning(), 4, 13,15

	bash
	checks
	chk
	e.observe
	e.observe.event
	Error
	ew
	get_call
	get_msg
	Issue
	latch
	raise
	resolves
	skip
	template
	Warning
	Index

